
Software Technology

Sandro Stucki

D&IT lunch seminar – 2019-11-21

(Using material from previous years, including material by

David Sands and Magnus Myreen)

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 2

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 3

Copyright 2014 Barr Group. All rights reserved.

18

#KillerApps

SAYLOR CRASH

“Saylor”
28 Aug ’09

Source: http://www.nbcsandiego.com/news/local/CHP-Of ficer-Family-Killed-in-Crash-56629472.html

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 4

2010

Over 6000 complaints of unintended
acceleration

US Congress instigates NASA investigation

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 5

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

NASA Conclusions

•
NASA didn’t find a “sm

oking gun”
•

Tight tim
eline & lim

ited inform
ation [Bookout2013-10-14AM

 39:18-40:8]

•
Did not exonerate system

•
But, U.S. Transportation Secretary Ray LaHood said,
“W

e enlisted the best and brightest engineers to study Toyota’s

electronics system
s, and the verdict is in. There is

no electronic-based cause
for unintended high-speed

acceleration in Toyotas."

9

[NASA UA Report. Executive Sum
m

ary]

http://www.nhtsa.gov/PR/DOT-16-11

…

◄2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 6

2013 Civil

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 7

Bugs per line of code?

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 8

Concurrent Programming

Natural programming model in

• embedded systems

• operating systems

• GUIs

But it is easy to get wrong!

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 9

Sequential program

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 10

Concurrent Program

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 11

Demo

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 12

Data Race

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 13

Learn More!

Concurrent Programming

TDA384/DIT391 LP1, LP3

Testing, Debugging, and Verification

TDA567/DIT082, LP2

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 14

Bugs might make
things go wrong

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 15

Bugs might make
things go wrong

will

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 16

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 17

No bugs = Secure?

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 18

No bugs = Secure?

Does the software treat our sensitive data in an
appropriate way?

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 19

What Information Flow Control

do we want?

• Confidentiality, Privacy

– Information about sensitive data cannot be

deduced by observing public channels

• Integrity

– Untrusted data should not influence the

values sent on trusted channels

• Erasure

– information is no longer available after use

Software Technology – D&IT lunchseminarium – Chalmers2019-02-21 20

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 21

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 22

if (input != “attack at dawn”)
{ output(“BANG!”); }

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 23

Our Chief Weapon

https://youtu.be/1N6OOWtCYQA

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 24

https://youtu.be/1N6OOWtCYQA

Our Chief Weapon

Static Analysis

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 25

Our Chief Weapon

Static Analysis

Main =
do { x <- readFile

“Contact”;
system(“/usr/

ucb/mail “ ++ x)
; etc etc etc.

+

policy

code

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 26

Our Chief Weapons

Transformation

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 27

Our Chief Weapons

Transformation

Main =
do { x <- readFile

“Contact”;
system(“/usr/

ucb/mail “ ++ x)
; etc etc etc.

+

policy

code

Code
+ policy

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 28

Our Chief Weapons

Libraries

Main =
do { x <- readFile

“Contact”;
system(“/usr/

ucb/mail “ ++ x)
; etc etc etc.

+
policy
code

code

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 29

Our Chief Weapons

New Programming

Languages

Transformation

Static Analysis

Monitoring

Main =
do { x <- readFile

“Contact”;
system(“/usr/

ucb/mail “ ++ x)
; etc etc etc.

code
policy

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 30

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 31

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 32

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 33

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 34

What do we need to achieve this?

Deep understanding of programming language
design and implementation

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 35

Where to start?

Programming Language Technology

LP2 DAT151/DIT230

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 36

More to come (MSc)

• Compiler Construction TDA283/DIT300, LP4

• Language-based Security TDA602/DIT101, LP4

• Formal Methods for TDA294/DIT271, LP1
Software Development

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 37

Courses

Concurrent programming

Testing, Debugging,
& Verification

Bachelor’s level

Language-Based
Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 38

… an error in java.util

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 39

… an error in java.util

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-
broken-and-how-to-fix-it/2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 40

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

The KeY project

• KeY lets you specify the
desired behaviour of your
program in the well-known
specification language JML,
and helps you prove that your
programs conforms to its
specification. That way, you
did not only show that your
program behaves as expected
for some set of test values -
you proved that it works
correctly for all possible
values!

• Wolfgang Ahrendt (Chalmers)
and others

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 41

A brief demo of KeY

https://www.key-project.org/

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 42

More to come (MSc)

• Compiler Construction TDA283/DIT300, LP4

• Language-based Security TDA602/DIT103, LP3

• Formal Methods for TDA294/DIT271, LP1
Software Development

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 43

Courses

Concurrent programming

Testing, Debugging,
& Verification

Bachelor’s level

Language-Based
Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 44

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 45

All (unverified) compilers have bugs

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilersshouldbecorrect. Toimprovethequality of Ccompilers,

wecreated Csmith, a randomized test-casegeneration tool, and

spent threeyearsusingit tofindcompiler bugs. Duringthisperiod

wereportedmorethan325previously unknownbugstocompiler

developers. Every compiler wetestedwasfoundtocrashandalso

tosilently generatewrongcodewhenpresentedwithvalid input.

In thispaper wepresent our compiler-testing tool andtheresults

of our bug-huntingstudy. Our first contribution istoadvancethe

stateof theart incompiler testing. Unlikeprevioustools, Csmith

generatesprogramsthat cover alargesubset of Cwhileavoidingthe

undefinedandunspecifiedbehaviorsthat woulddestroy itsability

toautomatically findwrong-codebugs. Our secondcontributionisa

collectionof qualitativeandquantitativeresultsabout thebugswe

have found in open-sourceC compilers.

Categories and Subject Descriptors D.2.5 [SoftwareEngineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: LanguageClassifications—C; D.3.4[Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,

random testing, random program generation

1. Introduction

Thetheory of compilationiswell developed, andtherearecompiler

frameworksinwhichmanyoptimizationshavebeenprovedcorrect.

Nevertheless, thepractical art of compiler constructioninvolvesa

morassof trade-offsbetweencompilationspeed, codequality, code

debuggability, compiler modularity, compiler retargetability, and

other goals. It shouldbenosurprisethat optimizingcompilers—like

all complex software systems—contain bugs.

Miscompilations often happen because optimization safety

checks are inadequate, static analyses are unsound, or transfor-

mationsareflawed. Thesebugsareout of reach for current and

futureautomatedprogram-verificationtoolsbecausethespecifica-

tionsthat needtobecheckedwerenever writtendowninaprecise

way, if theywerewrittendownat all. Whereverificationisimprac-

tical, however, other methodsfor improvingcompiler quality can

succeed. Thispaper reportsour experienceinusingtestingtomake

C compilers better.

c ACM, 2011. Thisistheauthor’sversion of thework. It isposted hereby permission

of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN

Conferenceon Programming LanguageDesign and Implementation (PLDI), San Jose,

CA, Jun. 2011, http://doi.acm.o
rg/10.1145/NNNN

NNN.NNNNNNN

1 int foo (void) {

2 signed char x = 1;

3 unsigned char y = 255;

4 return x > y;

5 }

Figure1. Wefoundabugintheversionof GCCthat shippedwith

UbuntuLinux 8.04.1for x86. At all optimizationlevelsit compiles

thisfunctiontoreturn1; thecorrect result is0.TheUbuntucompiler

washeavily patched; thebaseversionof GCCdidnot havethisbug.

WecreatedCsmith, arandomizedtest-casegenerator that sup-

portscompiler bug-huntingusingdifferential testing. Csmithgen-

eratesaCprogram; atest harnessthencompilestheprogramus-

ingseveral compilers, runstheexecutables, andcomparestheout-

puts. Although thiscompiler-testing approach hasbeen used be-

fore[6, 16, 23], Csmith’stest-generationtechniquessubstantially

advancethestateof theart by generating randomprogramsthat

areexpressive—containingcomplexcodeusingmanyClanguage

features—whilealsoensuringthat everygeneratedprogramhasa

single interpretation. To haveauniqueinterpretation, aprogram

must not executeany of the191kindsof undefinedbehavior, nor

depend on any of the52 kindsof unspecified behavior, that are

described in the C99 standard.

For thepast threeyears, wehaveusedCsmithtodiscover bugs

inCcompilers. Our resultsareperhapssurprisingintheir extent: to

date,wehavefoundandreportedmorethan325bugsinmainstream

CcompilersincludingGCC,LLVM,andcommercial tools. Figure1

showsarepresentativeexample. Everycompiler that wehavetested,

includingseveral that areroutinelyusedtocompilesafety-critical

embedded systems, hasbeen crashed and also shown to silently

miscompilevalidinputs. Asmeasuredby theresponsestoour bug

reports, thedefectsdiscoveredby Csmithareimportant. Most of

the bugs we have reported against GCC and LLVM have been

fixed. Twenty-fiveof our reportedGCCbugshavebeenclassifiedas

P1, themaximum, release-blockingpriority for GCCdefects. Our

resultssuggest that fixedtest suites—themainway that compilers

are tested—are an inadequate mechanism for quality control.

Weclaimthat Csmith isan effectivebug-finding tool in part

becauseit generatesteststhat exploreatypical combinationsof C

language features. Atypical code is not unimportant code, how-

ever; it is simply underrepresented in fixed compiler test suites.

Developerswhostray outsidethewell-testedpathsthat represent

acompiler’s“comfort zone”—for examplebywritingkernel code

or embeddedsystemscode, usingesotericcompiler options, or au-

tomatically generatingcode—canencounter bugsquitefrequently.

Thisisasignificant problemfor complex systems. Wolfe[30], talk-

ingabout independent softwarevendors(ISVs) says: “AnISV with

acomplexcodecanworkaroundcorrectness, turnoff theoptimizer

inoneor twofiles, andusuallytheyhavetodothat for anyof the

compilerstheyuse” (emphasisours). Asanother example, thefront

1

PLDI’11

“ Every compiler we tested was found to
crash and also to silently generate

wrong code when presented with valid input. ”

“ [The verified part of] CompCert is the only compiler
 we have tested for which Csmith cannot find wrong-code
 errors. This is not for lack of trying: we have devoted
 about six CPU-years to the task.”

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 46

CakeML: A Ver ified Implementation of ML

RamanaKumar⇤
1 MagnusO. Myreen† 1 Michael Norrish

2 Scott Owens3

1 Computer Laboratory, University of Cambridge, UK

2 CanberraResearch Lab, NICTA, Australia
‡

3 School of Computing, University of Kent, UK

Abstract

Wehavedeveloped and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tiredevelopment wascarried out in theHOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbagecollection.

⇤supported by theGates CambridgeTrust

† supported by theRoyal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantageand that copiesbear thisnoticeand thefull citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must behonored. Abstracting with credit ispermitted. To copy otherwise, or

republish, to post on serversor to redistributeto lists, requiresprior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright isheld by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . .$15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in thecontext of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting aprogram from asourcestring to a list of

numbers representing machinecode, and two, theexecution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purposeprogramming language. Our language is

called CakeML, and it is astrongly typed, impure, strict functional

languagebased on Standard ML and OCaml. By verified, wemean

that theCakeML system isultimately x86-64 machinecodealong-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by thesemanticsof CakeML.

Wedid not write theCakeML compiler and platform directly in

machinecode. Instead wewrite it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

largeexampleprogram. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of thecompiler.

Another consequenceof bootstrapping isthat wecan includethe

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assuranceapplications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were theoriginal motivation for ML.

Contributions

• Semanticsthat arecarefully designed to besimultaneously suit-

ablefor proving meta-theoretic languagepropertiesand for sup-

porting averified implementation. (Section 3)

• An extension of aproof-producing synthesispathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections4–6, 10)

POPL 2014

Scaling up…

First bootstrapping of a
formally verified compiler.

Project lead: Magnus
Myreen

(now at Chalmers)

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 47

… in a connected world:

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 48

… in a connected world:

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 49

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 50

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 51

PRIVACY POLICIES

522019-02-21 Software Technology – D&IT lunchseminarium – Chalmers

Where to start?

TDA294 / DIT271

Formal Methods for Software Development, LP1

(DAT060 / DIT201 Logic in computer science, LP1)

(DAT350 / DIT232 Types for Programs and Proofs, LP1)

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 53

All problems are not solved:

2018: https://meltdownattack.com/

Information leakage due to speculation in hardware implementation.

2019-02-21 Software Technology – D&IT lunchseminarium – Chalmers 54

